Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation

نویسندگان

  • Betsy A. Bancroft
  • Nick J. Baker
  • Catherine L. Searle
  • Tiffany S. Garcia
  • Andrew R. Blaustein
چکیده

Habitat use by animals often reflects the balance between conflicting demands such as foraging and avoiding predation. Environmental stressors such as temperature can also affect habitat use in many organisms, particularly in ectothermic animals. For example, warm, shallow thermal regimes in ponds can optimize growth and developmental rate of amphibian larvae but may also expose larvae to potentially harmful levels of ultraviolet B (UVB) radiation. Thus, optimally, amphibians seeking sunlight for thermoregulation must balance this behavior while limiting their exposure to harmful UVB radiation. We conducted a series of laboratory and field experiments to test the hypothesis that larval amphibians avoid UVB by selecting microhabitats with lower exposure to UVB. We then quantified habitat use of the larvae of 4 amphibian species using field transects in 3 ponds with different UVB transmission. Tadpoles did not avoid UVB radiation in laboratory or field experiments and preferred warmer temperatures in laboratory thermal gradients regardless of UVB exposure. The majority of anuran larvae were observed in water less than 10–15 cm deep in field surveys, whereas salamander larvae were most often observed in deeper, cooler water. The similarity in habitat use across different sites and the lack of evidence of UVB avoidance in choice tests suggest that larval anuran amphibians may be exposed to harmful levels of UVB radiation due to habitat choice behaviors that have been established over evolutionary time. Levels of UVB radiation at the earth’s surface have recently increased due to stratospheric ozone depletion. Thus, long-term selection pressures such as thermoregulation may override the relatively recent selection pressure of increased UVB radiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Do high temperatures enhance the negative effects of ultraviolet-B radiation in embryonic and larval amphibians?

For the embryos and tadpoles of amphibian species, exposure to ultraviolet-B radiation (UVBR) can be lethal, or cause a variety of sublethal effects. Low temperatures enhance the detrimental effects of UVBR and this is most likely because the enzyme-mediated processes involved in the repair of UVBR-induced damage function less effectively at low temperatures. Whether these repair processes are ...

متن کامل

A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival.

Human alterations to natural systems have resulted in a loss of biological diversity around the world. Amphibian population losses have been more severe than those of birds and mammals. Amphibian population declines are likely due to many factors including habitat loss, disease, contaminants, introduced species and ultraviolet-B (UVB) radiation. The effect of UVB, however, varies widely among s...

متن کامل

مطالعه پرتوهای فرابنفش انتشار یافته از لامپ‏های فلورسنت فشرده متداول

Background and aims: Compact fluorescent lamps(CFLs) are low-pressure mercury vapor lamps, which are more useful than other light sources. Some studies reported the leakage of UV radiation from CFLs. The aim of this study was measuring of ultraviolet radiation from universal compact fluorescent lamps in Iran. Methods: In this study, measuring of UV radiation of 54 bulb compact fluorescent lamps...

متن کامل

UV-B Induced Skin Darkening in Larval Salamanders Does Not Prevent Sublethal Effects of Exposure on Growth

Interspecific differences in sensitivity to ultraviolet-B radiation (UV-B; 280–315 nm) are well documented for amphibians. However, few studies have addressed physiological mechanisms underlying differential species survival to such exposure. One potential mechanism that might protect amphibians from damaging UV-B involves melanin production and resultant skin darkening. In this study, we exami...

متن کامل

The effects of UVB radiation on charophycean algae and bryophytes

This thesis reports on the effects of UVB radiation on charophycean algae and bryophytes. Due to thinning of the ozone layer, more UVB radiation is reaching the earth surface. UVB radiation affects life on earth. Since the discovery of the ozone hole many studies focused on the effects of UV(B) radiation on terrestrial and marine organisms. Studies that focused on the effects on plants showed d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008